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As part of a program to evaluate expectations in complex distributions by long- 
term averages of solutions to Langevin equations with complex dirft, a simple 
one-dimensional example is examined in some detail. The validity and rate of 
convergence of this scheme depends on the spectrum of an associated non-self- 
adjoint Hamiltonian which is found numerically. In the regime where the 
stochastic evaluation should be accurate numerical solution of the Langevin 
equation shows this to be the case. 
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1. I N T R O D U C T I O N  

1.1, Pre l iminar ies  

Consider  the F o k k e r - P l a n c k  equa t ion  (forward Ko lmogorov  

equat ion)  (L) given by 

OF(x, t) 1 O 

Ot 2 Ox 

a + as(x)] 
ax ] F(x,  t) (1) 

for t/> 0 subject to the initial  condi t ion  F(x,  O) = Fo(x). For  S(x )  a smooth  
real funct ion with the proper ty  that  e s(x) is integrable, it follows that  

lim F(x,  t) = Ce -s(x~ (2) 
t ~ o o  
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for all smooth initial distribution Fo. Here C is a constant determined so 
that 

f F ( x , t )  d x = f F o ( x ) d x = C f e  S(X) dx (3) 

The validity of (2) follows readily if we introduce 

G(x, t) = F(x, t)e (l/2)s(x) 

and note that 

(4) 

where 

8G(x, t) 
8t 

- -  - HG(x, t) 

=!( 
2 \ S x  

[ 
1 8S\fl  8 1 8 8 \  
2 

1 6 2 ] 
2 8x 2 + V(x) G(x, t) (5) 

l [ O S ( x ) q  2 1 ~2S(x) 
V(x)=-~ [_ 8x ] 4 8x 2 (6) 

It is evident that H is a self-adjoint operator  with a nonnegative spectrum. 
Indeed if S(x)>~ const + ex 2 for some e > 0, as we shall assume, then the 
spectrum of H is purely discrete. Consequently, 

G(x, t ) =  ~ a ,O, (x )e - ; " '  
n=0 

=Ce (1/2)s(~)+ ~, a,~,(x)e-;.., (7) 
n=l 

where 

H~h .(x)  = 2. ~h.(x) (8) 

and we have noted that e (1/2)s is an eigenfunction of zero energy, 2 0 = 0. 
Since e -(l/z~s is nowhere vanishing it is the (nondegenerate) ground state 
of H, and thus 2n>0 ,  for all n~>l. Indeed we mean by this that 
")~n >/"~min > 0 for all n >/1. As t ~ ov it follows that 

lim G(x, t) = Ce -(x/2)s(x) (9) 
t~oo 
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and therefore 

lim F(x,  t) = Ce  s(x) (10) 
t ~ o ~  

as was to be shown. 
We note in addition that associated to every Fokker Planck equation 

is a Langevin equation (stochastic differential equation) (1) given in the 
present case by 

1 •S(x) 
+~(t) (11) 2 ( 0 -  2 8x x=x(,) 

Here ~ denotes a generalized, standard Gaussian white noise process for 
which 

(~(t)) =o 

( ~(tl ) ~(t2) ) = 8(tl - t2) 

where ( . )  denotes an average over the white noise ensemble. If the dis- 
tribution of initial values of x(O) for (11) is given by Fo, then it follows for 
any suitable function A that 

Thus if 

we see that 

_ ~ A(x) F(x, t) dx 
<A(x(0))- ~F(x, t)dx 

=_ ~ A(x )e  -s(x) dx 

e -s(x) dx 

(12) 

(13) 

lira A(x( t ) )  dt = .,~ (15) 
T ~  oo T 

1.2. Can S Be Complex? 

In this paper we raise the question: Provided S e s (x)dx~O and 
~le s(x)] dx < 0% how much of the foregoing scenario remains true if S is 

Moreover, the convergence criterion (2) also ensures that the ensemble is 
ergodic in the sense that 

lim ( A ( x ( t ) ) )  = A (14) 
l ~ o o  
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complex? That is, when S is complex is it possible that a general solution to 
the complex Fokker-Planck equation satisfies (2), and, as a consequence 
thereof, that solutions to the complex Langevin equation fulfill (14) and 
(15)? We are led to ask this question as it has recently arisen in the course 
of studying complex Langevin equations as a means to calculate statistical 
averages. (2,3) 

When S is complex, the operator H defined by (5) and (6) is non-self- 
adjoint and nonnormal. There is a conspicuous absence of general spectral 
theorems in this case. If we assume that Vi-=Im V(x) is a Kato-tiny 
perturbation (4) of Hr = H - i V i ,  namely, for general 0 that 

(f lvi@12dx)l/2~a(f ll/ll2dx)l/2-~b(f ,mr@12dx) 1/2 (16) 

for some positive a and b, b < 1, then it follows from properties of the 
resolvent operator that eigenfunctions exist and are complete, and that 
both eigenfunctions and eigenvalues are analytic in the coefficient of Vi 
about zero. This desirable situation may always be arranged, at least for 
polynomial S, by analytic continuation in the independent variable x if 
need be. The solutions to the eigenvalue equation (again taken discrete), 

HO,(x) = 2n~9~(X) (17) 

involve complex eigenvalues ./. and eigenfunctions 0, which need not be 
mutually orthogonal. Orthogonality in the form SOn(X) Om(x)dx=O 
whenever 5~n~5[ m does hold, however, in the present case since 

On(x) HOm(X) dx = ~ tPm(X) HOn(x) dx holds by integration by parts. By 
construction, e -(~/2~s(X) is always an eigenfunction with eigenvalue zero 
()~0=0). Consequently, the convergence criterion (2) will be fulfilled 
provided 

Re2n~>c>0, n~>l (18) 

This condition would follow immediately from the Feynman-Kac 
formula, (5~ for example, if only 

1 c~ 2 
H r =  2 c?x2 + Re V(x) (19) 

was nonnegative, but this is generally not the case. 
Choose S complex and assume (18) is true so that the asymptotic 

behavior (2) holds. Despite appearances the solutions of (11) diverge on 
only a set of measure zero (see the example below). Moreover, it is 
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straightforward to show that (1) and (11) are still linked by (12). However, 
the left side of (12) involves cancellation among large numbers (see below) 
that could be a source of error in a numerical solution of (11). In our 
calculation we have taken a simple approach to this problem by cutting 
from a given sample those paths which are growing very large in absolute 
value. Clearly such cutting could affect the averaging procedure, but we 
find that if done symmetrically about the mean of x, the results are quite 
stable and relatively independent of the cutting size. 

To illustrate our ideas and to study these general questions further, let 
us specialize to a "typical" example where 

S(x)  = ~rx 2 + �89 4 (20) 

and a is a complex parameter. In this case 

1 0 2  1 2 2  3 1 6 1 
H = ---~x----~-~--~G x ---~x2.-~(Tx4-~-~x ---.~G ( 2 1 )  

In the next section we discuss the numerical results for the spectrum of the 
operator in (21), and show that (18) holds whenever (i) R e ~ > 0 ,  or (ii) 
Re~ r<0  provided IIm al is sufficiently small. The associated Langevin 
equation for t ~> 0 reads in this case 

2(t) = - a z ( t )  - z3(t) + ~(t) (22) 

subject to the real initial value z(0)=Xo,  where Xo has a suitable dis- 
tribution. Despite appearances the solutions to this equation diverge in a 
finite time for only a set of measure zero. If at t = to, z is large in absolute 
magnitude then (22) reduces essentially to ~ ( t ) = - z 3 ( t )  the solution of 
which is given for t/> to by 

z(t) =- x(t)  + iy(t) = + 1/(2t - c~ - ifl) l/2 (23) 

where ~ and fl are real. If fi = 0 and 2 t o - ~  > 0, then z(t) approaches the 
origin along the x axis, while if 2 t o -  c~ < 0, then z(t) diverges in a finite 
time along the y axis. However, when cr is complex, f i = 0  occurs with 
probability zero. When B r 0 the solution (23) remains f inite while travers- 
ing the outline of one of the leaves of a four-leaf clover pattern, outward 
from the origin when near the y axis and then inward toward the origin 
when near the x axis. For ~ = T  and 0 <  Ifll<{T the contribution to 

T 2 IT-1S0 z (t) dtl of the solution (23) is given approximately by (~/2T), 
while the contribution to T-~Sglz ( t )12dt  is given approximately by 
(In(T/I/31)/T. This estimate illustrates the cancellation among large numbers 
that is involved in (I2), and higher moments show that an ever increasing 
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Table I. 
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Comparison of Long-Time Average (15) to Numerical  integrat ion 
of (13) for A ( x ) = x  za 

Long time SDE vs. numerical integration 

~moo x2e -S(x) dx 

2 (0.195 -- 0.015) 0.197 
2 +  (1/2)i ( 0 . 1 9 4 + 0 . 0 1 3 ) -  (0.032 • 0.003)i 0.193 - 0.032i 
2 + i (0.177 • 0.014) - (0.061 + 0.007)i 0.179 - 0.061i 
2 + 2i (0.134 • 0.009) - (0.097 • 0,009 ) i 0.136 - 0.099i 
2 + 3i (0.091 • 0.007) -- (0.104 • 0.011 )i 0.091 - 0.108i 
2 + 4i (0.059 • 0.006) - (0.099 _+ 0.010)i 0,059 - 0.100i 

1 (0.285 • 0.023) 0,290 
1 + ( 1/2)i (0.280 • 0.020) - (0.061 • 0.006) i 0.279 -- 0.062i 
1 + i (0.247 • 0.019) - (0.114 • 0.012)i 0.248 -- 0.114i 
1 + 2i (0.160 • 0.014) - (0.167 • 0.018) i 0.160 - 0.166i 
1 + 3i (0.079 • 0 . 0 1 4 ) -  (0,150 • 0.021)i 0.079 - 0.155i 
1 + 4i (0.044 __+ 0.013) - (0.133 • 0.023 )i 0.040 - 0.126i 

1/2 (0.359 • 0.030) 0.366 
1/2 + (1/4)i (0.361 • 0 . 0 2 7 ) -  (0.046 • 0.005) i 0.362 - 0 . 0 4 5 i  
1/2 + (1/2) i (0.349 _+_ 0.027) - (0.087 • 0.009) i 0,349 - 0.089i 
1/2 + (3/4)i (0.320 + 0.028) - (0.125 • 0.013)i 0.328 - 0.129i 
1/2 + i (0.297 • 0.030) - (0.160 • 0.019)i 0.300 - 0.163i 
1/2 + 2i (0.164 • 0.025) - (0.228 • 0.036) i 0.160 - 0.223i 

0 (0.467 • 0.039) 0.478 
0 + (1/4)i (0.472 • 0.037) - (0.068 • 0.008) i 0.471 - 0,067i 
0 + ( l /2) i  (0.449 • 0.035) - (0.129 • 0.016)i 0.451 - 0,132i 
0 + (3/4)i (0.408 + 0.038) - (0.186 • 0.022) i 0.418 - 0,190i 
0 + i (0.367 • 0.045) -- (0.234 • 0.034) i 0.374 - 0,240i 
0 + 2i (0.242 _+_ 0.032) - (0.407 • 0.071 )i 0.150 - 0,308i 

1/2 (0.627 • 0.051 ) 0,645 
- 1/2 + (1/4)i (0.638 • 0 . 0 5 4 ) -  (0.101 _ 0.014)i 0.635 - 0.101i 
- 1/2 + ( 1/2)i (0.620 • 0.047) - (0.197 • 0.028 )i 0.605 - 0.198i 
- 1/2 + (3/4)i (0.588 • 0.057) - (0.307 • 0.044) i 0.554 - 0.288i 
- 1/2 + i (0.574 • 0.048) - (0.408 • 0.065 )i 0.485 - 0.365i 

1/2 + 2i (0.522 _+ 0.066) - (0.973 ___ 0.119)i 0.107 - 0.441 i 

~Initial sample sizes for (15) are 64 paths  and were cut down if Ixl >106. In this table 
T =  100, and statistical errors within the 64 paths showed 1/,,/7 behavior. 

d e g r e e  o f  c a n c e l l a t i o n  is  r e q u i r e d .  T h e  m a g n i t u d e  o f  t h e  p r o b l e m  c a u s e d  b y  

s u c h  c a n c e l l a t i o n s  v a r i e s  w i t h  t h e  p a r a m e t e r  cr w h i c h  i n  t u r n  h a s  a s t r o n g  

i n f l u e n c e  o n  t h e  d i s t r i b u t i o n  o f  fi v a l u e s  i n  v a r i o u s  s o l u t i o n s .  

I n  t h e  n e x t  s e c t i o n  w e  i l l u s t r a t e  t h e  a p r o x i m a t e  e q u a l i t y  o f  ( 1 3 )  a n d  
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(15) (for a large finite time T) for the example of A(x)=x 2 by comparing 
the numerical integration (6) of (13) to the long-time average (15). The 
numerical solution of the stochastic differential equation (11) was com- 
puted by the method of Helfand. (7) We find agreement to a very satisfac- 
tory precision (see Table I). 

2. N U M E R I C A L  PROCEDURE A N D  RESULTS 

We have diagonalized the eigenvalue equation H~ = 2~ by computing 
the eigenvalues of the discretized problem 

N 

~, H~aj=2ai, O<~i<~N (24) 
j - O  

where the Rayleigh Ritz expansion 

N 

= Z ajOj(x) (25) 
j--O 

is in eigenvectors of the harmonic oscillator. The matrix elements 

Ho = f dx ~i(x)H (Dj(x) 

were computed from the ladder operators 

We find that for the first few eigenvalues ([2[ small), a few hundred terms 
in (25) are adequate provided Re a > - 1 .  For Re a ~ - 1 ,  (25) becomes 
unreliable and N is prohibitively large. 

In Fig. 1 we plot the modulus [akl vs. k for the numerical solutions of 
the two lowest lying eigenstates when a =  -�89 and a =  - � 89  For these 
figures N~< 50 is clearly sufficient. 

A modified version of H. R. Swarz's algorithm BANDR (8) was used to 
reduce [Hij] to tridiagonal form. After reduction to tradiagonal form, a 
complex version of TQL1 ~9~ yields the eigenvalues. It is known that com- 
plex versions of BANDR can be unstable for some problems./1~ We did 
careful comparisons of our results with those from the LR method (~1~ and 
are quite comfortable with the CBANDR procedure. The even and odd 
parts of matrix [Hij ] each taken separately have bandwidth = 7; hence, an 
operation count proportional to 7N 2 is clearly an advantage over LR with 
an operation count O(N3). 
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MODULUS OF EVEN COEFFICIENTS 
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Fig. 1. Plots of modulus  taxi of harmonic oscillator coefficients in expansion (25), vs. k. 
Coefficients laxl < 10 3 were ignored. 
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Fig .  1 (continued) 



Fig. 2. 

EIGENVALUE X 

( a )  
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E I00 

o = O + i . O  
c= 0 + i . 2 0  

\\  

I i i i i ~ 1  i i I 

I0 0 I0 20 30 

(b) ReX 
Trajectories of the first eight eigenvalues of operator (23), for 0 ~< Im ~ ~< 20. The even 

solutions are solid lines, odd solutions are dashed. 
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Fig. 2 (continued) 

By scaling x in (23), x + ~x, the scaled eigenvalue equation 

H~$ = )~h 

can be made more stable than the original. Here ,~#=~2)~ and 
H f = ~ 2 H ( ~ x ) .  The choice {2 = 1/l~rl seemed best. 

The trajectories of the first eigenvalues of (24) for 0 ~< Im a ~< 20 are 
shown in Figs. 2. Note that for large Im a that the successive eigenvalues 
fall on a straight line. In the following section we show that this "complex 
frequency" harmonic oscillator result is not surprising. 

The coefficients aj were computed by finding the null vector of 
[Ho]- 2. For  this computation the condition number estimator CGBCO 
from Linpack (22) was used. We found condition numbers greater than 1014. 
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Fig. 3. Plots of the first two eigenfunctions of opera tor  (23) in x space when Re o = �89 0, -- �89 
The real parts  are plotted as solid lines, imaginary parts  as dashed lines. The phase conven- 
tion is described in the text of Section 2. 
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Fig. 3 (continued) 
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Fig. 3 (continued) 

Furthermore, the eigenvalues from TQL1 were compared with inner 
products 

/ 

Z ~ i ~ e i j a j / Z  "i~"i 
i,j - i 

and gave excellent agreement. 
In Figs. 3 we illustrate the wave functions for the first two eigenvalues. 

Comparing 3", 3 e, and 3 ~, note the bifurcation in the ground state at the 
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critical point Re a = 0 .  (13) The phase of these wave functions were chosen 
such that Im O0(x = 0) = 0. Namely, a phase c~ was chosen such that 

Im(ei~0o(X = 0)) = 0 

and every other 0k was multiplied by this same phase factor e i~. The real 
parts of ff are shown in solid lines, the imaginary parts are dashed. 

2.1. Large-a  Results 

In Fig. 2 we have shown numerical evidence for Re a >~ 0 that Re 2 ~> 0. 
Apparently for large [al the spectrum is given by the "complex frequency" 
harmonic oscillator result 2 = no. Equation (23) takes the form of a com- 
plex frequency harmonic oscillator when [a] is large. If Re ~ ~< 0, however, 
the solutions are not obviously square integrable. Our example is 

Hr E -  

where g = ( 1 / 2 ) ( • S / O x  = a x  + x 3. 

(0x + g)~0 = 0 and is 

Now, for large x, (26) is 

The ground state q)o satisfies 

__ O-X 2 ~4.1 
fro(X) = exp 2 

approximately 

--  ~X2 --~-- X 6 I//~--~ 0 

Asymptotically I~bj~exp(-x4/4).  We are therefore tempted to write all 
solutions of (26) as 

4'(x) = ~(x) ~'o(X) 

with the requirement that ~b be regular. The eigenvalue problem for ~b is 

2 c3x 2 + t a x  + x ) ~x = 2~b (27) 

For large la], noting from Figs. 2 that 2(a) is growing, (27) becomes 

a~ 
~ x ~ = ~  
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Table II. The Ratio [~ e-Sdx]/~ ]e-Sl dx Illustrating 
Cancellation in the Complex Measures 

Contributions from complex measures 

I ~ e  sl~)dxl 

2 1.0 
2 + / 0.970 
2 + 2i 0.892 
2 + 3i 0.803 
2 + 4i 0.723 

l 1.0 
l + i 0.942 
1 + 2i 0.813 
l + 3i 0.690 
1 + 4i 0.600 

0 1.0 
0 + i 0.880 
0 + 2i 0.657 
0 + 3i 0.5O3 
0 + 4i 0.423 

- 1/2 1.0 
1/2 + i 0.824 

- 1/2 + 2i 0.531 
1/2 + 3i 0.379 

- 1/2 + 4i 0.318 

having solut ion ~bocx ~J~ For  ~b to be regular a long the negative x axis 

requires 2 = na, n a positive integer. 

2.2.  S t o c h a s t i c  E s t i m a t e  o f  A 

In  Table  I we tabula te  the eva lua t ion  of (13) and  (15) for a finite T f o r  
the special case of A = x 2. The stochastic data  were obta ined  for T =  102 

and  by averaging the results over as m a n y  as 64 different sample paths. 
Any path that diverged was thereafter dropped from the sample. For  

Re a ~> �89 no more  than  one path  diverged, for Re a = 0 as m a n y  as half  the 
paths diverged, and  for Re a = - � 8 9  only a few paths survived. 

F r o m  our numerica l  results abou t  the spectrum of (8), we expect that  
for R e a > 0  the results of (13) and  (15) for a large finite T should be 
approximately equal. Indeed, they seem to be so. Errors in the 
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stochastically determined results fell as T 1/2 and showed a remarkable 
independence of sample size. Additional accuracy may be attained for 
Re a ~> �89 simply by increasing T which is easily done since almost no path 
diverges in that case; in some examples we have used T= 10 3 or e v e n  l 0  4 

with correspondingly improved accuracy and with almost no path 
divergences. These data are not quoted for lack of an across-the-board 
comparison. 

As one measure of the cancellation occurring in the complex 
integrands we list in Table II the ratio of complex measures given by 

If axe s(X~l 

3. C O N C L U S I O N S  

In summary, we have demonstrated that reasonably accurate 
numerical estimates of averages such as (13) may be computed by long- 
time averages involving solutions of an associated Langevin equation (11) 
even when the distribution (e -s) is complex, provided the convergence 
criterion (2) is satisfied. The accuracy that may be attained with this 
method increases the more rapidly the convergence criterion (2) is obeyed. 
Although the example we have considered here is only one-dimensional 
(xe ~) the method is applicable to N-dimensional examples (x ~ RN); for 
example, the model treated in Ref. 3 took N as great as 2048. Our purpose 
in this paper has been to give a more in-depth study of the principles of the 
complex Langevin method rather than deal with a complicated many- 
dimensional model. Finally, we observe that the property Re 2n > 0, n >~1 
for Re a > 0~as  is strongly evident from the numerical studies for the 
example of this paper--appears sufficiently simple in character to admit an 
analytic proof. Unfortunately we have been unsuccessful in that quest. 
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